Linear Regression

Logistic Regression

Softmax Regression

STAT3612 Lecture 3 Generalized Linear Models

Dr. Aijun Zhang

15 September 2020

Generalized Linear Models •00000 Linear Regression

Logistic Regression

Softmax Regression 0000

Table of Contents

2 Linear Regression

3 Logistic Regression

Generalized Linear Models	Linear Regression	Logistic Regression	Softmax Regression

George Box

George Box (1919–2013) Wikipedia

- "One of the great statistical minds of the 20th century"
- Most famous quote: "Essentially, all models are wrong, but some are useful."
- Nate Silver (2012, The Signal and the Noise): What Box meant is that all models are simplifications of the universe, as they must necessarily be. As another mathematician said, "The best model of a cat is a cat."
- Norbert Wiener (1945, Philosophy of Science): *The best material model of a cat is another, or preferably the same, cat.*
- Another quote by Box: "Statisticians, like artists, have the bad habit of falling in love with their models."

Generalized Linear Models	Linear Regression	Logistic Regression 00000000	Softmax Regression
Generalized Linea	r Models (GA	M)	

- Under supervised settings, consider the regression problem with the feature $X \in \mathbb{R}^{p-1}$ and the response $Y \in \mathbb{R}$. Let $\mu(\mathbf{x}) = \mathbb{E}[Y|X = \mathbf{x}]$ denote the conditional mean of *Y* given $X = \mathbf{x}$.
- A generalized linear model (GLM) takes the form

$$g[\mu(\boldsymbol{x})] = \eta(\boldsymbol{x}) = \beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1}$$

where $g : \mathbb{R} \to \mathbb{R}$ is a strictly monotonic link function, and $\eta(\mathbf{x})$ is the linear predictor involving the intercept β_0 and the coefficients $\{\beta_j\}$.

- Interpretation of GLM coefficients: a unit increase in x_j with other features fixed increases the g-transform of expected response by β_j.
- The choice of link function *g* depends on the types of the response variable, e.g. Gaussian, Binomial, Multinomial, Poisson, etc.

O 1' 1 T '		1	
000000	00000000000	00000000	0000
Generalized Linear Models	Linear Regression	Logistic Regression	Softmax Regression

Generalized Linear Models: Link Functions

• When *Y* is continuous and follows the Gaussian (i.e. Normal) distribution, we simply use the **identity** link:

$$\gamma \leftarrow g[\mu] = \mu$$
 (Linear regression)

• When *Y* is binary (e.g. $\{0, 1\}$), $\mu(x) = \mathbb{P}(Y = 1 | X = x)$, which equals the success probability of the binomial distribution. We use the **logit** link:

$$\eta \leftarrow g[\mu] = \log\left(\frac{\mu}{1-\mu}\right)$$
 (Logistic regression)

• When *Y* is multi-category (*K* ordinal classes), let $\gamma_j(\mathbf{x}) = \mathbb{P}(Y \le j | \mathbf{x})$ denote the cumulative probability, we use the **ordinal logit** link:

$$\log\left(\frac{\gamma_j(\boldsymbol{x})}{1-\gamma_j(\boldsymbol{x})}\right) = \theta_j - \boldsymbol{\beta}^T \boldsymbol{x} \qquad (Proportional odds model)$$

where each class has the specified intercept θ_j .

000000	00000000000	00000000	0000
Generalized Linear Models	Linear Regression	Logistic Regression	Softmax Regression

Generalized Linear Models: Link Functions

• When *Y* is multi-category (*K* nominal classes), we use the **multinomial logit** (inverse) link:

$$\mathbb{P}(Y = k | X = \mathbf{x}) = \frac{e^{\eta_k(\mathbf{x})}}{e^{\eta_1(\mathbf{x}) + \dots + \eta_K(\mathbf{x})}}$$
(Softmax regression)

where each class gets its own linear prediction $\eta_l(\mathbf{x})$ for l = 1, ..., K.

• When *Y* represents counts $\{0, 1, 2, ...\}$ and follows the Poisson distribution

$$\mathbb{P}(Y=k|X=\mathbf{x})=\frac{\lambda(\mathbf{x})^k}{k!}e^{-\lambda(\mathbf{x})},\ k=0,1,2,\ldots$$

we have that $\mu(\mathbf{x}) = \mathbb{E}(Y) = \lambda(\mathbf{x}) \ge 0$, and use the natural **log** link:

$$\eta \leftarrow g[\mu] = \log(\mu)$$
 (Poisson regression)

Comparelized Line	Madala, Da		
00000	00000000000	00000000	0000
Generalized Linear Models	Linear Regression	Logistic Regression	Softmax Regression

Generalized Linear Models: Remarks

- The classical GLMs by McCullagh and Nelder (1989) are described by an exponential family of distributions (e.g. Gaussian, Bernoulli, Poisson, and Gamma); see Wikipeida.
- The introduced link functions take the canonical forms, while there also exist other link functions (e.g., **logit**, probit, cloglog for the binomial and multinomial responses).
- The GLMs are intrinsically interpretable, i.e. the model coefficients can be interpreted with practical language.
- In machine learning, the linear and logistic/softmax regression models are mostly discussed.

Generalized Linear Models

Linear Regression

Logistic Regression

Softmax Regression 0000

Table of Contents

3 Logistic Regression

000000		0000000000	00000000	0000
τ.	D	N / T 1 1		

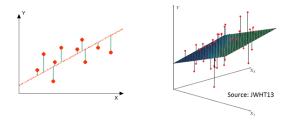
Linear Regression Model

• Given the *n*-sample observations represented by $X \in \mathbb{R}^{n \times p}$ (including the first column of ones) and $y \in \mathbb{R}^n$, the linear model takes the form

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_n)$$

The unknown vector of parameters β ∈ ℝ^p is estimated by minimizing the mean squared error (MSE):

$$\min_{\boldsymbol{\beta}} \text{MSE}(\boldsymbol{\beta}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i^T \boldsymbol{\beta})^2 = \frac{1}{n} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2$$



Generalized Linear Models	Linear Regression	Logistic Regression	Softmax Regression
Least Squares Est	imation		

• Differentiating MSE w.r.t. *β* and setting to zero, we have the **normal** equation:

$$\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} = \boldsymbol{X}^T \boldsymbol{y} \tag{1}$$

• When $X^T X$ is invertible, we obtain the least squares estimator (LSE):

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$
(2)

• The best linear unbiased prediction (BLUP) for *y* is given by

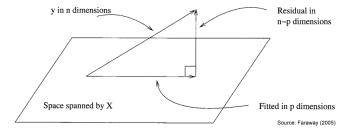
$$\hat{\mathbf{y}} = \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} = \mathbf{H} \mathbf{y}$$
(3)

where H is called the hat matrix and it is an orthogonal projector to the space spanned by X.

Goodness-of-fit	Statistic		
Generalized Linear Models	Linear Regression	Logistic Regression	Softmax Regression

The percentage of variance explained (a.k.a. coefficient of determination):

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}} = 1 - \frac{SSE}{SST} \in [0, 1]$$
(4)



Generalized Linear Models	Linear Regression	Logistic Regression	Softmax Regression
ANOVA Test			

Null hypothesis (that corresponds to the overall mean model $y = \mu + \varepsilon$):

$$H_0: \quad \beta_1 = \cdots = \beta_{p-1} = 0$$

Testing by the *F*-statistic:

$$F = \frac{(\text{SST} - \text{SSE})/(p-1)}{\text{SSE}/(n-p)} \sim F_{p-1,n-p}$$

where the null $F_{p-1,n-p}$ distribution determines a critical value or *p*-value.

Source	Degrees of freedom	Sum of Squares	Mean Square	F
Regression	<i>p</i> – 1	SSR	SSR/(p-1)	$\frac{\text{SSR}/(p-1)}{\text{SSE}/(n-p)}$
Residual	n-p	SSE	SSE/(n-p)	
Total	n - 1	SST		

Generalized Linear Models	Linear Regression	Logistic Regression	Softmax Regression
Wald Test			

Null hypothesis on a single parameter: H_0 : $\beta_j = 0$

Testing by the *t*-statistic:

$$t = \frac{\hat{\beta}_j}{\operatorname{se}(\hat{\beta}_j)} \sim t_{n-p}$$

(or equivalently $F = t^2 \sim F_{1,n-p}$). It is straightforward to construct the confidence interval for β_i between the bounds

$$\hat{\beta}_j \pm t_{1-\alpha/2,n-p} \operatorname{se}(\hat{\beta}_j).$$

Note that the variance σ^2 and the standard error of $\hat{\beta}_j$ can be estimated by

$$\hat{\sigma}^2 = \frac{\text{SSE}}{n-p}, \quad \text{se}(\hat{\beta}_j) = \hat{\sigma} \sqrt{(X^T X)_{(j+1)(j+1)}^{-1}}$$

Generalized	Linear	Models

Linear Regression

Logistic Regression

Softmax Regression 0000

Demo Output

import statsmodels.api as sm

X1 = sm.add_constant(X)
lm = sm.OLS(y,X1).fit()
print(lm.summary())

OLS Regression Results

Dep. Variable	e:		У	R-sq	uared:		0.938
Model:			OLS	Adj.	R-squared:		0.937
Method:		Least Sq	uares	F-sta	atistic:		736.9
Date:	-	Thu, 31 Jan	2019	Prob	(F-statistic):		6.20e-88
Time:		15:	48:40	Log-	Likelihood:		36.809
No. Observati	ions:		150	AIC:			-65.62
Df Residuals:			146	BIC:			-53.57
Df Model:			3				
Covariance Ty	/pe:	nonr	obust				
					P> t	-	-
					0.165		
					0.000		
	-0.2103						
x2	0.2288						
x3	0.5261	0.024	2	1.536	0.000	0.4/8	0.574
Omnibus:			5.603	Durb	in-Watson:		1.577
Prob(Omnibus)			0.061		ue-Bera (JB):		6.817
Skew:	•		0.222				0.0331
Kurtosis:			3.945				90.0
			+-	cond			2010

Generalized Linear Models	Linear Regression	Logistic Regression 00000000	Softmax Regression			
Model Diagnostics	Model Diagnostics					

Be aware of the potential problems with the linear regression model:

- Problem with the response-feature relationship: non-linearity
- Problem with the error assumption: non-normality, heteroscedasticity
- Problem with the observations: outliers, high-leverage points
- Problem with the features: collinearity, multi-collinearity

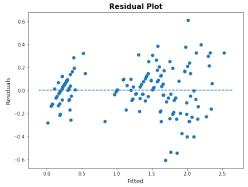
Graphical diagnostic techniques: histogram, residual plot, influence plot ...

 Generalized Linear Models
 Linear Regression
 Logistic Regression
 Softmax Regression

 000000
 0000000000
 000000000
 0000

Model Diagnostics: Residual plot

Compute the residuals $\hat{\varepsilon}_i = \hat{y}_i - y_i$, and plot them against the fitted values.



- Check if there is any non-linear trend (non-linearity);
- Check if there is non-constant variance (heteroscedasticity).

Generalized Linear Models	Linear Regression	Logistic Regression	Softmax Regression

Model Diagnostics: Histogram of Residuals

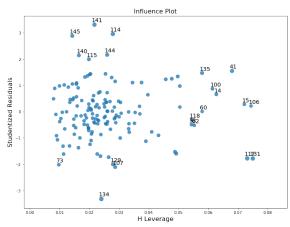
Histogram of Residuals 25 20 15 10 0 -0.2 0.2 -0.6 -0.4 0.0 0.4 0.6

• Check if there residuals are normally distributed. (Also, QQ plot)

Generalized Linear Models	Linear Regression	Logistic Regression	Softmax Regression

Model Diagnostics: Influence Plot

- Leverage scores: $h_i = H_{ii}$ (hat matrix diagonal) for checking influence
- Studentized residuals: $r_i = \frac{\hat{\varepsilon}_i}{\hat{\sigma}\sqrt{1-h_i}}$ for checking outlyingness



	00000000000	00000000	0000
Model Diagnostics	: Collinearity		

- Detect collinearity (when 2 features are highly correlated) by checking the correlation matrix of the features
- Detect multi-collinearity (when 3 or more features are highly correlated) by checking the VIF (variance inflation factor):

$$\text{VIF}(\hat{\beta}_{j}) = \frac{1}{1 - R_{X_{j}|X_{-j}}^{2}},$$

via regression of X_j on all other features X_{-j} , repeatedly for all j.

```
from statsmodels.stats.outliers_influence import variance_inflation_factor
VIF = [variance_inflation_factor(X, i) for i in range(X.shape[1])]
np.round(VIF,2)
array([204.77, 85.62, 36.71])
```


Generalized Linear Models

Linear Regression

Logistic Regression

Softmax Regression 0000

Table of Contents

Generalized Linear Models

2 Linear Regression

3 Logistic Regression

4 Softmax Regression

Generalized Linear Models	Linear Regression	Logistic Regression	Softmax Regression

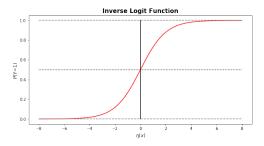
Logistic Regression

When $Y \in \{0, 1\}$, consider the GLM with the logit link function:

$$\log\left(\frac{\mu(\boldsymbol{x})}{1-\mu(\boldsymbol{x})}\right) = \eta(\boldsymbol{x}) = \beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1} = \boldsymbol{\beta}^T \boldsymbol{x}$$

The probability of Y = 1 is given by the inverse logit function:

$$p(\boldsymbol{x}) \equiv \mu(\boldsymbol{x}) = \frac{1}{1 + e^{-\eta(\boldsymbol{x})}} = \frac{1}{1 + e^{-\boldsymbol{\beta}^T\boldsymbol{x}}} = \sigma(\boldsymbol{\beta}^T\boldsymbol{x})$$



- For binary responses, the decision boundary separates the predictions of 1's from 0's. It corresponds to $\mathbb{P}(Y = 1 | \mathbf{x}) = 0.5$ or the log odds $\eta(\mathbf{x}) = 0$.
- So the decision boundary for logistic regression is given by

$$\beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1} = 0.$$

• In (x_1, x_2) case, the decision boundary of abline format:

$$x_2 = -\frac{\beta_0}{\beta_2} - \frac{\beta_1}{\beta_2} x_1$$

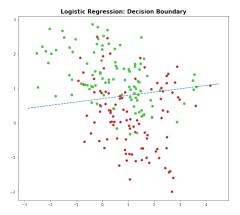
• In 2D case, we may also visualize the decision boundary by mesh grid prediction.

Generalized Linear Models	Linear Regression	Logistic Regression	Softmax Regre
		00000000	

Logistic Regression: Decision Boundary

from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression(C=1e8)
logreg.fit(X, y)
np.round(logreg.intercept_, 4), np.round(logreg.coef_, 4)

(array([-0.978]), array([[-0.1344, 1.3981]]))



 Generalized Linear Models
 Linear Regression
 Logistic Regression
 Softmax Regression

 000000
 0000000000
 000000000
 0000

Logistic Regression: Decision Boundary Visualization

Logistic Regression: Decision Boundary $^{-1}$ -2 -3 -2

Parameter Estin		00000000	0000
000000	00000000000	00000000	0000
Generalized Linear Models	Linear Regression	Logistic Regression	Softmax Regression

The unknown parameter β can be estimated by minimizing the negative log-likelihood (loss function) for *n*-sample observations:

$$L(\boldsymbol{\beta}) = -\log \prod_{i:y_i=1} p(\boldsymbol{x}_i) \prod_{i:y_i=0} (1 - p(\boldsymbol{x}_i))$$
$$= -\sum_{i=1}^n \left\{ y_i \log p(\boldsymbol{x}_i) + (1 - y_i) \log \left(1 - p(\boldsymbol{x}_i)\right) \right\}$$
$$= -\sum_{i=1}^n \left\{ y_i \boldsymbol{\beta}^T \boldsymbol{x}_i - \log \left(1 + e^{\boldsymbol{\beta}^T \boldsymbol{x}_i}\right) \right\}$$
(5)

Such a loss function is also known as the cross entropy function.

Generalized Linear Models	Linear Regression	Logistic Regression 000000●00	Softmax Regression
Logistic Regressio	n: Parameter	Estimation	

• The optimization problem can be solved through the Newton-Raphson method in an iterative way:

$$\boldsymbol{\beta}^{\text{new}} = \boldsymbol{\beta}^{\text{old}} - \left(\frac{\partial^2 L(\boldsymbol{\beta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^T}\right)^{-1} \left.\frac{\partial L(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}\right|_{\boldsymbol{\beta} = \boldsymbol{\beta}^{\text{old}}}$$

based on the first-order and second-order partial derivatives.

• Since evaluations of second-order derivatives (i.e. Hessian matrix) is highly demanding when *n* is large, the first-order methods are often used today, which are known as stochastic gradient decent (SGD) algorithms.

Generalized Linear Models

Linear Regression

Logistic Regression

Softmax Regression

Logistic Regression: Be Careful in Python

from sklearn.linear_model import LogisticRegression

X = DataX.iloc[:,2] y = DataX.iloc[:,2] logreg = LogisticRegression() logreg.fit(X, y) np.round(logreg.intercept_, 4), np.round(logreg.coef_, 4)

(array([-0.8496]), array([[-0.1586, 1.293]]))

import statsmodels.api as sm

X1 = sm.add_constant(X)
logreg = sm.Logit(y,X1).fit()
print(logreg.summary())

Optimization terminated successfully. Current function value: 0.523853 Iterations 6

Logit Regression Results _____ Dep. Variable: v No. Observations: 200 Model: Logit Df Residuals: 197 Method: MLE Df Model: 2 Thu, 14 Feb 2019 Pseudo R-squ.: 16:25:30 Log-Likelihood: 0.2442 Date: Time: -104.77 True LL-Null: -138.63 converged: LLR p-value: 1 974e-15 coef std err z P>|z| [0.025 0.975] const -0.9780 0.295 -3.321 0.001 -1.555 -0.401 -0.1344 0.327 -0.403 0.137 -0.980 0.134 1.3981 0.232 6 835 0 000 0 944 1.852

from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression(C=1e8)
logreg.fit(X, y)
np.round(logreg.intercept_, 4), np.round(logreg.coef_, 4)

(array([-0.978]), array([[-0.1344, 1.3981]]))

- The loss function expressed as the cross entropy (for y_i ∈ {0,1}) can be re-expressed through the margin y_iη(x_i)'s (for y_i ∈ {−1,1}) similar to the loss function in the support vector machines.
- The Newton-Raphson method for the GLM is known equivalent to an iteratively reweighted least squares (IRLS) algorithm.
- Subsampled Newton's method for large-scale logistic modeling, as compared to Newton's sketch method.
- Large-scale logistic modeling can be better optimized by first-order method (i.e. SGD algorithm), which can be implemented as a special case of neural network model by Scikit-learn/TensorFlow/Keras/PyTorch

Generalized Linear Models

Linear Regression

Logistic Regression

Softmax Regression ●000

Table of Contents

Generalized Linear Models

2 Linear Regression

3 Logistic Regression

Generalized Linear Models	Linear Regression	Logistic Regression	Softmax Regression ○●○○
Softmax Regres	ssion		

- Softmax regression is also known as "multinomial logistic regression".
- The inverse link function for the probability prediction is given by

$$p_k(\boldsymbol{x}) = \frac{\exp(\boldsymbol{\beta}_k^T \boldsymbol{x})}{\sum_{l=1}^K \exp(\boldsymbol{\beta}_l^T \boldsymbol{x})}, \quad k = 1, \dots, K$$

Each class has its own dedicated β_k . By the fact $\sum_{k=1}^{K} p_k(x) = 1$, we may set the first class as the baseline such that $\beta_1 = 0$.

- The class prediction is given by $\hat{y} = \arg \max_k p_k(\mathbf{x})$.
- In Python.Sklearn, use the logistic regression with multinomial option: softmaxreg = LogisticRegression(multi_class="multinomial", solver="lbfgs", C=1e10) softmaxreg.flt(X, y)

 Generalized Linear Models
 Linear Regression
 Logistic Regression
 Softmax Regression

 000000
 0000000000
 000000000
 000000000

Softmax Regression: Iris Dataset

Softmax Regression for Iris Dataset 4.5 4.0 sepal width (cm) 30 2.5 2.0 Ś 6 8 sepal length (cm)

See also here for R code demonstration.

Linear Regression

Logistic Regression

Thank You!

Q&A or Email ajzhang@hku.hk.

