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George Box

George Box (1919–2013)

Wikipedia

“One of the great statistical minds of the 20th century”

Most famous quote: “Essentially, all models are
wrong, but some are useful.”

Nate Silver (2012, The Signal and the Noise): What
Box meant is that all models are simplifications of the
universe, as they must necessarily be. As another
mathematician said, “The best model of a cat is a cat.”

Norbert Wiener (1945, Philosophy of Science): The
best material model of a cat is another, or preferably
the same, cat.

Another quote by Box: “Statisticians, like artists, have
the bad habit of falling in love with their models.”
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Generalized Linear Models (GAM)

Under supervised settings, consider the regression problem with the
feature X ∈ Rp−1 and the response Y ∈ R. Let µ(x) = E[Y |X = x] denote
the conditional mean of Y given X = x.

A generalized linear model (GLM) takes the form

g[µ(x)] = η(x) = β0 + β1x1 + · · · + βp−1xp−1

where g : R→ R is a strictly monotonic link function, and η(x) is the
linear predictor involving the intercept β0 and the coefficients {βj}.

Interpretation of GLM coefficients: a unit increase in xj with other
features fixed increases the g-transform of expected response by βj .

The choice of link function g depends on the types of the response
variable, e.g. Gaussian, Binomial, Multinomial, Poisson, etc.
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Generalized Linear Models: Link Functions

When Y is continuous and follows the Gaussian (i.e. Normal) distribution,
we simply use the identity link:

η← g[µ] = µ (Linear regression)

When Y is binary (e.g. {0,1}), µ(x) = P(Y = 1|X = x), which equals the
success probability of the binomial distribution. We use the logit link:

η← g[µ] = log
(
µ

1 − µ

)
(Logistic regression)

When Y is multi-category (K ordinal classes), let γj(x) = P(Y ≤ j |x)
denote the cumulative probability, we use the ordinal logit link:

log
(
γj(x)

1 − γj(x)

)
= θ j − βT x (Proportional odds model)

where each class has the specified intercept θ j .
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Generalized Linear Models: Link Functions

When Y is multi-category (K nominal classes), we use the multinomial
logit (inverse) link:

P(Y = k |X = x) = eηk (x)

eη1(x)+· · ·+ηK (x)
(Softmax regression)

where each class gets its own linear prediction ηl(x) for l = 1, . . . ,K .

When Y represents counts {0,1,2, . . .} and follows the Poisson distribution

P(Y = k |X = x) = λ(x)
k

k!
e−λ(x), k = 0,1,2, . . .

we have that µ(x) = E(Y ) = λ(x) ≥ 0, and use the natural log link:

η← g[µ] = log(µ) (Poisson regression)
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Generalized Linear Models: Remarks

The classical GLMs by McCullagh and Nelder (1989) are described by an
exponential family of distributions (e.g. Gaussian, Bernoulli, Poisson, and
Gamma); see Wikipeida.

The introduced link functions take the canonical forms, while there also
exist other link functions (e.g., logit, probit, cloglog for the binomial and
multinomial responses).

The GLMs are intrinsically interpretable, i.e. the model coefficients can
be interpreted with practical language.

In machine learning, the linear and logistic/softmax regression models are
mostly discussed.

StatSoft.org 7

https://en.wikipedia.org/wiki/Generalized_linear_model


Generalized Linear Models Linear Regression Logistic Regression Softmax Regression

Table of Contents

1 Generalized Linear Models

2 Linear Regression

3 Logistic Regression

4 Softmax Regression

StatSoft.org 8



Generalized Linear Models Linear Regression Logistic Regression Softmax Regression

Linear Regression Model

Given the n-sample observations represented by X ∈ Rn×p (including the
first column of ones) and y ∈ Rn, the linear model takes the form

y = Xβ + ε, ε ∼ N(0,σ2In)

The unknown vector of parameters β ∈ Rp is estimated by minimizing the
mean squared error (MSE):

min
β

MSE(β) = 1
n

n∑
i=1
(yi − xTi β)2 =

1
n
∥y − Xβ∥2
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Least Squares Estimation

Differentiating MSE w.r.t. β and setting to zero, we have the normal
equation:

XTXβ = XT y (1)

When XTX is invertible, we obtain the least squares estimator (LSE):

β̂ = (XTX)−1XT y (2)

The best linear unbiased prediction (BLUP) for y is given by

ŷ = X(XTX)−1XT y = Hy (3)

where H is called the hat matrix and it is an orthogonal projector to the
space spanned by X .
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Goodness-of-fit Statistic

The percentage of variance explained (a.k.a. coefficient of determination):

R2 = 1 −
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

= 1 − SSE
SST

∈ [0,1] (4)
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ANOVA Test
Null hypothesis (that corresponds to the overall mean model y = µ + ε):

H0 : β1 = · · · = βp−1 = 0

Testing by the F-statistic:

F =
(SST − SSE)/(p − 1)

SSE/(n − p) ∼ Fp−1,n−p

where the null Fp−1,n−p distribution determines a critical value or p-value.
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Wald Test
Null hypothesis on a single parameter: H0 : βj = 0

Testing by the t-statistic:

t =
β̂j

se(β̂j)
∼ tn−p

(or equivalently F = t2 ∼ F1,n−p). It is straightforward to construct the
confidence interval for βj between the bounds

β̂j ± t1−α/2,n−pse(β̂j).

Note that the variance σ2 and the standard error of β̂j can be estimated by

σ̂2 =
SSE
n − p

, se(β̂j) = σ̂
√
(XTX)−1

(j+1)(j+1)
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Demo Output
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Model Diagnostics

Be aware of the potential problems with the linear regression model:

Problem with the response-feature relationship: non-linearity

Problem with the error assumption: non-normality, heteroscedasticity

Problem with the observations: outliers, high-leverage points

Problem with the features: collinearity, multi-collinearity

Graphical diagnostic techniques: histogram, residual plot, influence plot ...
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Model Diagnostics: Residual plot

Compute the residuals ε̂i = ŷi − yi , and plot them against the fitted values.

Check if there is any non-linear trend (non-linearity);

Check if there is non-constant variance (heteroscedasticity).
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Model Diagnostics: Histogram of Residuals

Check if there residuals are normally distributed. (Also, QQ plot)
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Model Diagnostics: Influence Plot

Leverage scores: hi = Hii (hat matrix diagonal) for checking influence

Studentized residuals: ri =
ε̂i

σ̂
√

1−hi
for checking outlyingness
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Model Diagnostics: Collinearity

Detect collinearity (when 2 features are highly correlated) by checking the
correlation matrix of the features

Detect multi-collinearity (when 3 or more features are highly correlated)
by checking the VIF (variance inflation factor):

VIF(β̂j) =
1

1 − R2
X j |X− j

,

via regression of X j on all other features X−j , repeatedly for all j.
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Logistic Regression
When Y ∈ {0,1}, consider the GLM with the logit link function:

log
(
µ(x)

1 − µ(x)

)
= η(x) = β0 + β1x1 + · · · + βp−1xp−1 = βT x

The probability of Y = 1 is given by the inverse logit function:

p(x) ≡ µ(x) = 1
1 + e−η(x)

=
1

1 + e−βT x
= σ(βT x)
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Logistic Regression: Decision Boundary

For binary responses, the decision boundary separates the predictions of
1’s from 0’s. It corresponds to P(Y = 1|x) = 0.5 or the log odds η(x) = 0.

So the decision boundary for logistic regression is given by

β0 + β1x1 + · · · + βp−1xp−1 = 0.

In (x1, x2) case, the decision boundary of abline format:

x2 = −
β0
β2
− β1
β2

x1

In 2D case, we may also visualize the decision boundary by mesh grid
prediction.
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Logistic Regression: Decision Boundary
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Logistic Regression: Decision Boundary Visualization

StatSoft.org 24



Generalized Linear Models Linear Regression Logistic Regression Softmax Regression

Parameter Estimation

The unknown parameter β can be estimated by minimizing the negative
log-likelihood (loss function) for n-sample observations:

L(β) = − log
∏
i:yi=1

p(xi)
∏
i:yi=0
(1 − p(xi))

= −
n∑
i=1

{
yi log p(xi) + (1 − yi) log

(
1 − p(xi)

)}
(5)

= −
n∑
i=1

{
yiβ

T xi − log
(
1 + eβ

T xi
)}

Such a loss function is also known as the cross entropy function.
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Logistic Regression: Parameter Estimation

The optimization problem can be solved through the Newton-Raphson
method in an iterative way:

βnew = βold −
(
∂2L(β)
∂β∂βT

)−1
∂L(β)
∂β

�����
β=βold

based on the first-order and second-order partial derivatives.

Since evaluations of second-order derivatives (i.e. Hessian matrix) is
highly demanding when n is large, the first-order methods are often used
today, which are known as stochastic gradient decent (SGD) algorithms.
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Logistic Regression: Be Careful in Python
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Logistic Regression: Interesting Problems

The loss function expressed as the cross entropy (for yi ∈ {0,1}) can be
re-expressed through the margin yiη(xi)’s (for yi ∈ {−1,1}) similar to the
loss function in the support vector machines.

The Newton-Raphson method for the GLM is known equivalent to an
iteratively reweighted least squares (IRLS) algorithm.

Subsampled Newton’s method for large-scale logistic modeling, as
compared to Newton’s sketch method.

Large-scale logistic modeling can be better optimized by first-order
method (i.e. SGD algorithm), which can be implemented as a special case
of neural network model by Scikit-learn/TensorFlow/Keras/PyTorch
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Softmax Regression

Softmax regression is also known as “multinomial logistic regression”.

The inverse link function for the probability prediction is given by

pk(x) =
exp(βT

k
x)∑K

l=1 exp(βT
l
x)
, k = 1, . . . ,K

Each class has its own dedicated βk . By the fact
∑K

k=1 pk(x) = 1, we may
set the first class as the baseline such that β1 = 0.

The class prediction is given by ŷ = arg maxk pk(x).

In Python.Sklearn, use the logistic regression with multinomial option:
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Softmax Regression: Iris Dataset

See also here for R code demonstration.
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Thank You!

Q&A or Email ajzhang@hku.hk.
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