Polynomial Base

Spline Bases

Binning for Binary Responses 00000000

STAT3612 Lecture 4 Feature Engineering

Dr. Aijun Zhang

22 September 2020

Feature Engineering ●000000	Polynomial Bases	Spline Bases	Binning for Binary Responses
Table of Conten	ts		

2 Polynomial Bases

3 Spline Bases

Binning for Binary Responses

Feature Engineering	Polynomial Bases	Spline Bases	Binning for Binary Responses
0●0000	0000	00000000	
Feature Engineer	ring		

- Feature engineering refers to the process of creating new input features to improve model performance.
- **Data preprocessing** usually refers to data cleaning, vector representation, missing value imputation, feature scaling (normalization/standardization), data reduction and splitting. It may also include feature engineering as a key procedure.
- "Coming up with features is difficult, time-consuming, requires expert knowledge. *Applied machine learning* is basically feature engineering." Dr. Andrew Ng
- An interesting machine learning jargon in Chinese: "特徵沒選好,調參調到老"。

Andrew Ng (born 1976) Chinese: 吳恩達 Wikipedia

Feature Engineering	Polynomial Bases 0000	Spline Bases 00000000	Binning for Binary Responses
Feature Enginee	ring		

In this lecture, we focus on the feature engineering methods that transform a continuous variable to multiple bases in order to better capture the **nonlinear** patterns. In particular, we study the following two scenarios:

- Nonparametric regression for curve fitting problem
 - Polynomial bases (also log, polar, etc.)
 - Piecewise polynomials and B-Splines
- Binning techniques for logistic regression
 - Top-down splitting by FICO Information Value
 - Bottom-up merging by ChiMerge Algorithm

Feature engineering would increase the signal strengths and allow for more sophisticated modeling, e.g. in the generalized additive models (GAM).

Feature Engineering	Polynomial Bases 0000	Spline Bases 00000000	Binning for Binary Responses
Curve Fitting Pro	oblem		

• Suppose we are given a dataset with (*x_i*, *y_i*) observed from a signal plus noise model

$$y_i = f(x_i) + \varepsilon_i$$

where f(x) is the underlying true function and the noise $\varepsilon_i \sim N(0, \sigma^2)$.

• We want to estimate f(x) by data modeling. This is an inverse problem.

Feature Engineering	Polynomial Bases 0000	Spline Bases 00000000	Binning for Binary Responses
Data Generating	Mechanism		

• Assume the true signal $f(x) = e^{-(x-3)^2}$, add random noise $N(0, 0.1^2)$ to generate the data; use a random seed for ensuring reproducibility.

• Such ground truth f(x) is unknown while we conduct the data modeling.

Feature Engineering	Polynomial Bases	Spline Bases	Binning for Binary Responses
00000●	0000	00000000	
Basis Expansion			

- **Basis expansion** is a popular approach to feature engineering. It is a simple extension of linear models to capture nonlinearity.
- It is to transform the raw features with new representations {φ_j(x)}_[p] through certain basis functions. Then, predict the response by

$$f(x) \approx \sum_{j=1}^{p} \beta_j \phi_j(x) = \boldsymbol{\phi}(x)^T \boldsymbol{\beta}$$

• This reduces to the linear modeling with least squares solution:

$$\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} \left[y_i - \boldsymbol{\phi}(x)^T \boldsymbol{\beta} \right]^2 = (\mathbf{y} - \boldsymbol{\Phi} \boldsymbol{\beta})^T (\mathbf{y} - \boldsymbol{\Phi} \boldsymbol{\beta})$$
$$\Rightarrow \hat{\boldsymbol{\beta}} = (\boldsymbol{\Phi}^T \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^T \mathbf{y}$$

• **Questions:** a) What type of basis functions? b) How many of them?

Feature Engineering 000000	Polynomial Bases	Spline Bases	Binning for Binary Responses
Table of Conten	ts		

2 Polynomial Bases

3 Spline Bases

Binning for Binary Responses

000000 Delementell	0000	00000000	0000000
Polynomial I	Kegression		

• Use the default polynomials of different degrees as the basis functions, then substitute them as the design matrix for linear modeling

000000	0000	00000000	0000000
Polynomial Reg	ression		

• Use the **orthogonal polynomials** as the basis functions, in order to reduce the feature correlation (Wikipedia:Legendre Polynomials)

Delymomial Decreasion			
000000	0000	00000000	0000000
Feature Engineering	Polynomial Bases	Spline Bases	Binning for Binary Responses

Polynomial Regression

- Lower order polynomials capture the global behavior (low-frequency, or long-term trends)
- Higher order polynomials capture the local behavior (high-frequency, or short-term trends)
- Polynomial regression usually fits poorly near the endpoints (so-called boundary effect)

Feature Engineering	Polynomial Bases 0000	Spline Bases ●00000000	Binning for Binary Responses
Table of Conten	ts		

2 Polynomial Bases

Piecewise I in	ear Bases		
Feature Engineering	Polynomial Bases	Spline Bases	Binning for Binary Responses

• Divide the interval of interest [a, b] into K + 1 disjoint subintervals:

$$a = \tau_0 < \tau_1 < \cdots < \tau_K < \tau_{K+1} = b$$

based on the knots $\{\tau_k\}$ for $k = 1, \ldots, K$.

• For each subinterval define a piecewise basis function of the ReLU type,

$$\phi_k(x) = \begin{cases} x - \tau_k, & \text{if } x \ge \tau_k \\ 0, & \text{o.w.} \end{cases}$$

or the flattened type

$$\phi_k(x) = \begin{cases} \tau_{k+1} - \tau_k & \text{if } x \ge \tau_{k+1} \\ x - \tau_k, & \text{if } \tau_k < x \le \tau_{k+1} \\ 0, & \text{o.w.} \end{cases}$$

Feature Engineering	Polynomial Bases	Spline Bases	Binning for Binary Responses
		0000000	

Two-piece Linear Regression

Feature Engineering	Polynomial Bases 0000	Spline Bases	Binning for Binary Responses
Piecewise Linear	r Regression		

• Use the ReLU type of piecewise linear bases:

000000	0000	000000000	00000000
Piecewise Linear	r Regression		

• Use the flattened type of piecewise linear bases:

Feature Engineering	Polynomial Bases 0000	Spline Bases 00000●000	Binning for Binary Responses
B-Splines			

- **B-splines** extend from piecewise linear bases to higher order piecewise polynomials (De Boor, 1978)
- B-spline basis functions of degree q are defined for k = 1, ..., K + q + 1 recursively by

$$B_{k,q}(x) = \frac{x - \tau_k}{\tau_{k+q} - \tau_k} B_{k,q-1}(x) + \frac{\tau_{k+q+1} - x}{\tau_{k+q+1} - \tau_{k+1}} B_{k+1,q-1}(x),$$

with the initialized Haar basis functions for q = 0: $B_{k,1} = 1_{\{\tau_k \le x < \tau_{k+1}\}}$.

- Nice localized property: $B_{k,q}(x)$ is non-zero over $[\tau_k, \tau_{k+q+1}]$.
- Check more details at Wikipedia: B-spline

 Feature Engineering
 Polynomial Bases
 Spline Bases
 Binning for Binary Response

 000000
 000000000
 000000000
 000000000

B-Spline Bases

Cubic D. Culina	Desussian		
Feature Engineering 000000	Polynomial Bases 0000	Spline Bases	Binning for Binary Responses

Feature Engineering	Polynomial Bases	Spline Bases	Binning for Binary Responses
000000	0000	0000000●	
Natural Cubic Sp	oline Regression		

- Impose natural boundary conditions to force the linear polynomial functions beyond the boundary (roughly speaking).
 - Natural cubic splines often have superior smoothing performances.

Feature Engineering	Polynomial Bases 0000	Spline Bases	Binning for Binary Responses
Table of Cont	ents		

3 Spline Bases

4 Binning for Binary Responses

Feature Engineering	Polynomial Bases	Spline Bases	Binning for Binary Responses
Unsupervised B	inning		

- Equal Width Binning: Each bin has identical width.
- Equal Frequency Binning: Each bin has the same number of samples (i.e. percentile binning).

• More interested: supervised binning for logistic regression in particular.

ר י י ד 1		0 0 1	
000000	0000	000000000	0000000
Feature Engineering	Polynomial Bases	Spline Bases	Binning for Binary Responses

Binning Technique by FICO ScoreCard

Source: FICO Model Builder (White Paper)

FICO white paper: "Building Powerful, Predictive Scorecards"

Feature Engineering	Polynomial Bases	Spline Bases	Binning for Binary Responses
000000	0000	00000000	
IV Binning for B	Sinary Responses	5	

- Suppose the feature vector is partitioned into *K* bins. Let p_{1k} and p_{0k} denote the event and non-event percentages in the *k*th bin.
- Weight of Evidence (WOE): The WOE of *k*th bin is given by

WOE_k = log
$$\left(\frac{p_{0k}}{p_{1k}}\right)$$
, $k = 1, \dots, K$.

• Information Value (IV): the feature importance is measured by

IV =
$$\sum_{k=1}^{K} (p_{0k} - p_{1k}) WOE_k = \sum_{k=1}^{K} (p_{0k} - p_{1k}) \log\left(\frac{p_{0k}}{p_{1k}}\right).$$

• This is a top-down splitting procedure.

Feature Engineering	Polynomial Bases	Spline Bases	Binning for Binary Responses
			00000000

IV Binning for Binary Reponses

• Rules of thumb:

IV	Feature Predictiveness
< 0.02	Not useful for prediction
0.02 to 0.1	Weak predictive power
0.1 to 0.3	Medium predictive power
> 0.3	Strong predictive power

- **IV binning** for partitioning a variable is performed by building a decision tree through maximizing the IV gain.
- Refer to this blog and this package for more details.

Feature Engineering	Polynomial Bases	Spline Bases	Binning for Binary Responses		
000000	0000	00000000			
ChiMerge Binning for Binary Responses					

• ChiMerge Algorithm:

- Partition the input range into several initial intervals such that each sample finds its own interval.
- 2 Compute χ^2 value for every pair of adjacent intervals.
- Solution Merge the pair with the smallest χ^2 .
- Repeat steps 1 3 until the \(\chi^2\) values of all adjacent pairs exceed a certain threshold. That is, all adjacent pairs are significantly different in terms of \(\chi^2\) independence test.
- The threshold is typically chosen as the $\chi^2_{1,1-\alpha}$ with significance level α for binary labeled data.
- This is a bottom-up merging procedure.

Feature Engineering	Polynomial Bases	Spline Bases	Binning for Binary Responses		
	0000	00000000	○○○○○○●○		
ChiMerge Binning for Binary Responses					

• The formula of χ^2 value is given by

$$\chi^2 = \sum_{i=1}^m \sum_{j=1}^k \frac{(A_{ij} - E_{ij})^2}{E_{ij}},$$

where

- m = 2 as adjacent intervals are considered.
- k = 2 for the binary labeled data.
- A_{ij} : The number of samples in the *i*th interval and the *j*th class.
- E_{ij} : Let C_j denote total number of samples in the *j*th class, $N = \sum_{j=1}^{K} C_j$, and N_i denote the number of samples in the *i*th interval. $E_{ij} = N_i \frac{C_j}{N}$.

Polynomial Bases 0000 Spline Bases 000000000 Binning for Binary Responses

Thank You!

Q&A or Email ajzhang@umich.edu

