Smoothing Spline

Trend Filtering

Penalized B-Splines

The pyGAM Package

# STAT3612 Lecture 6 Generalized Additive Models

### Dr. Aijun Zhang

### 6 October 2020





| Generalized Additive Models | Smoothing Spline | Trend Filtering | Penalized B-Splines | The pyGAM Package |
|-----------------------------|------------------|-----------------|---------------------|-------------------|
| Table of Conter             | nts              |                 |                     |                   |



- 2 Smoothing Spline
- 3 Trend Filtering
- Penalized B-Splines
- 5 The pyGAM Package



# Generalized Additive Models Smoothing Spline Trend Filtering Penalized B-Splines The pyGAM Package 00000 000000000 000000000 000000000 0000000000

## Generalized Additive Models (GAM)

• Given features  $x \in \mathbb{R}^p$ , the GAM takes the form

$$g(\mathbb{E}(Y)) = \mu + f_1(x_1) + \dots + f_p(x_p)$$

where  $g(\cdot)$  is the link function,  $\mu$  is the overall mean, and  $f_j(\cdot)$  is the feature function for  $x_j$ .

- $f_j(\cdot)$  can be specified via parametric functions or via feature engineering.
- We consider the nonparametric estimation of  $f_j(\cdot)$  subject to certain interpretability constraints.
- GAM dates back to Trevor Hastie and Robert Tibshirani (1990). See also Wikipedia.









In statistics, the backfitting algorithm is a particularly useful procedure for fitting GAMs iteratively. See Wikipedia for details. It provides a greedy sub-optimal solution though.

For regression case with g(y) = y, the backfitting algorithm is as simple as

- 1. Initialize  $\bar{\mu} = \bar{y}$  and  $\hat{f}_j \equiv 0 \ \forall j$
- 2. Cycle through j = 1, ..., p, perform univariate smoothing

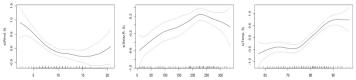
$$\hat{f}_j(x_{ij} \leftarrow S_j \left( \left\{ y_i - \hat{\mu} - \sum_{k \neq j} \hat{f}_k(x_{ik}) \right\}_{i=1}^n \right)$$

where  $S_i(\cdot)$  is a smoothing operator to be discussed in this chapter.

3. Continue Step 2 until the individual functions do not change.







Each univariate  $f_j(x_j)$  in a GAM is data-driven, subject to the following interpretability constraints:

- Homogeneously Smooth: classical nonparametric regression
  - ⇒ Kernel/Scatterplot smoothing: loess, local linear regression
  - $\Rightarrow$  Smoothing splines, Hodrick-Prescott filter ( $\ell_2$ -penalty)
- Inhomogeneously Smooth: e.g. piecewise-constant, piecewise-linear
  - $\Rightarrow \ell_1/\ell_0$ -trend filtering with automatic knot detection
  - $\Rightarrow \ell_2/\ell_1/\ell_0$ -penalized B-Splines
- Shape Constraints: e.g. increasing/decreasing, convex/concave ⇒ Monotone/Isotonic regression, Least concave majorant

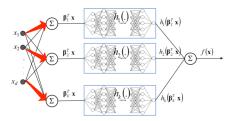




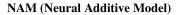
# GAM for Interpretable Machine Learning

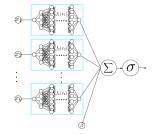
- The classical GAM (Hastie and Tibshirani, 1990) provides an important class of interpretable machine learning today.
- It can take advantages of deep learning for automated sub-modular feature representation, resulting in optimized solution via SGD network training.

GAM-Net (Special case of xNN)



Vaughan, Sudjianto, Brahimi, Chen, and Nair (2018) Yang, Zhang and Sudjianto (2019)





Agarwal, Frosst, Zhang, Caruana, and Hinton (2020)



| Generalized Additive Models | Smoothing Spline | Trend Filtering | Penalized B-Splines | The pyGAM Package |
|-----------------------------|------------------|-----------------|---------------------|-------------------|
| Table of Conte              | ents             |                 |                     |                   |

- Generalized Additive Models
- 2 Smoothing Spline
- 3 Trend Filtering
- Penalized B-Splines
- 5 The pyGAM Package



Generalized Additive Models

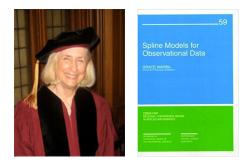
Smoothing Spline

Trend Filtering

Penalized B-Splines

The pyGAM Package

# **Smoothing Spline**



#### Grace Wabha: Spline Models for Observational Data (1990)



| Generalized Additive Models | Smoothing Spline | Trend Filtering | Penalized B-Splines | The pyGAM Package |
|-----------------------------|------------------|-----------------|---------------------|-------------------|
| Smoothing Spl               | ine              |                 |                     |                   |

• Smoothing spline is a basic tool for nonparametric regression. It controls the degree of smoothness through the roughness penalty:

$$\min_{f \in \mathcal{H}} \sum_{i=1}^{n} [y_i - f(x)]^2 + \lambda \int |f''(u)|^2 du$$

where  $\mathcal{H}$  denotes the 2nd-order Sobolev space.

- When  $\lambda = 0$ , there is no smoothing effect, but only interpolating.
- When  $\lambda = \infty$ , |f''(x)| = 0 for all x, which results in a line.





- The unique minimizer is a cubic spline with knots at the unique  $x_i$ .
- By expressing  $f(x) = \boldsymbol{\beta}^T \boldsymbol{\phi}(x)$  through use of B-spline bases, we can solve

$$\min_{\boldsymbol{\beta}} (\mathbf{y} - \boldsymbol{\Phi} \boldsymbol{\beta})^T (\mathbf{y} - \boldsymbol{\Phi} \boldsymbol{\beta}) + \lambda \boldsymbol{\beta}^T \boldsymbol{\Omega} \boldsymbol{\beta}$$

where  $\Omega_{ij} = \int \ddot{\phi}_i(x) \ddot{\phi}_j(x) dx$ . It leads to the generalized ridge estimator:

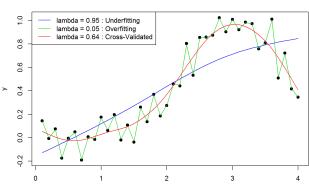
$$\hat{\boldsymbol{\beta}}_{\lambda} = (\boldsymbol{\Phi}^T \boldsymbol{\Phi} + \lambda \boldsymbol{\Omega})^{-1} \boldsymbol{\Phi}^T \mathbf{y}$$

• The smooth curve is given by  $\hat{y} = S_{\lambda} y$ , where the smoothing matrix is

$$\mathbf{S}_{\lambda} = \mathbf{\Phi} (\mathbf{\Phi}^T \mathbf{\Phi} + \lambda \mathbf{\Omega})^{-1} \mathbf{\Phi}^T$$



| Generalized Additive Models | Smoothing Spline | Trend Filtering | Penalized B-Splines | The pyGAM Package |
|-----------------------------|------------------|-----------------|---------------------|-------------------|
| Smoothing Spl               | ine Fits         |                 |                     |                   |



#### **Smoothing Spline**





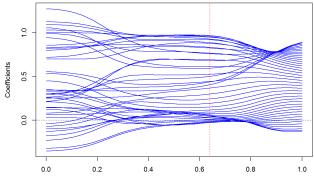
| Generalized Additive Models | Smoothing Spline | Trend Filtering | Penalized B-Splines | The pyGAM Package |
|-----------------------------|------------------|-----------------|---------------------|-------------------|
| Regularization              | Paths            |                 |                     |                   |

#### R code:



| Generalized Additive Models | Smoothing Spline | Trend Filtering | Penalized B-Splines | The pyGAM Package |
|-----------------------------|------------------|-----------------|---------------------|-------------------|
| Regularization              | Paths            |                 |                     |                   |

#### Smoothing Spline: Regularization Path



Smoothing parameter



| Generalized Additive Models | Smoothing Spline | Trend Filtering | Penalized B-Splines | The pyGAM Package |
|-----------------------------|------------------|-----------------|---------------------|-------------------|
| Cross-Validati              | on               |                 |                     |                   |

- Split the re-shuffled data into K (e.g. 5, 10, n) folds
- 2 For each fold  $k = 1, \ldots, K$ :
  - Fit model based on the remaining K-1 folds of data
  - Evaluate the fitted model on the left-out fold
- Take the average risk (i.e. MSE) as the cross-validation score



| Generalized Additive Models | Smoothing Spline | Trend Filtering | Penalized B-Splines | The pyGAM Package |
|-----------------------------|------------------|-----------------|---------------------|-------------------|
| Cross-Validatio             | n                |                 |                     |                   |

- Smoothing spline usually adopts the **GCV** (generalized cross-validation) based on the leave-one-out scheme (i.e. *n*-fold).
- For i = 1,...,n, let f<sup>[i]</sup>(x<sub>i</sub>) denote the prediction at x<sub>i</sub> based on the leave-one-out sample {(x<sub>j</sub>, y<sub>j</sub>)}<sub>j≠i</sub>, define

$$LOOCV(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \left( y_i - \hat{f}^{[i]}(x_i) \right)^2$$

• Upon some relaxation, the LOOCV score can be approximated by the following GCV score:

$$\text{GCV}(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \left( \frac{y_i - \hat{f}(x_i)}{1 - \text{tr}(\mathbf{S}_{\lambda})/n} \right)^2$$



| Generalized Additive Models | Smoothing Spline | Trend Filtering | Penalized B-Splines | The pyGAM Package |
|-----------------------------|------------------|-----------------|---------------------|-------------------|
| Cross-Validation            | on               |                 |                     |                   |

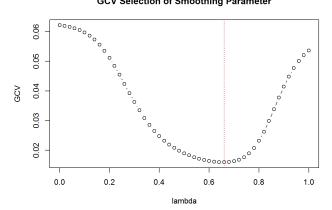
#### R code:

```
ss = seq(0, 1, by=0.02)
gcv = NULL
for (k in 1:length(ss)) {
  tmp = smooth.spline(x, y, spar=ss[k])
  gcv = c(gcv, tmp$cv.crit)
}
plot(ss, gcv, type='b',
      xlab="lambda", ylab="GCV",
      main="GCV Selection of Smoothing Parameter")
abline(v=ss[which.min(gcv)],col=2,lty=3,lwd=1)
```



| Generalized Additive Models | Smoothing Spline | Trend Filtering | Penalized B-Splines | The pyGAM Package |
|-----------------------------|------------------|-----------------|---------------------|-------------------|
| Cross-Validation            | on               |                 |                     |                   |

#### **GCV Selection of Smoothing Parameter**





| Generalized Additive Models | Smoothing Spline | Trend Filtering | Penalized B-Splines | The pyGAM Package |
|-----------------------------|------------------|-----------------|---------------------|-------------------|
| Table of Conten             | nts              |                 |                     |                   |

- Generalized Additive Models
- 2 Smoothing Spline
- 3 Trend Filtering
- Penalized B-Splines
- 5 The pyGAM Package



| Generalized Additive Models | Smoothing Spline | Trend Filtering | Penalized B-Splines | The pyGAM Package |
|-----------------------------|------------------|-----------------|---------------------|-------------------|
| HP Trend Filter             | ring             |                 |                     |                   |

- Let  $\{y_i\}_{i \in [n]}$  be the sequence data observed regularly (with equal spacing).
- Assume  $y_i = \alpha_i + \varepsilon_i$ , with  $\alpha_i$  representing the underlying signal/trend.
- HP  $\ell_2$ -trend filtering by Hodrick and Prescott (1997):

$$\min_{\{\alpha_i\}} \frac{1}{2} \sum_{i=1}^{n} (y_i - \alpha_i)^2 + \lambda \sum_{i=2}^{n-1} (\alpha_{i-1} - 2\alpha_i + \alpha_{i+1})^2$$

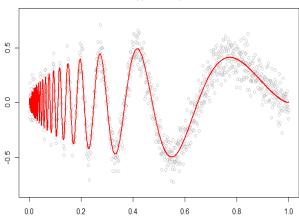
• It can be viewed as the smoothing spline under the discrete setting:

$$\min_{\boldsymbol{\alpha}\in\mathbb{R}^n}\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{\alpha}\|_2^2+\lambda\|\boldsymbol{D}^{(2)}\boldsymbol{\alpha}\|_{\ell_2}^2,$$

•  $D^{(2)} = [\cdots; 0 \dots 0, 1, -2, 1, 0 \dots 0; \cdots]$  is the 2nd-order difference matrix



| Generalized Additive Models | Smoothing Spline | Trend Filtering<br>00●0000 | Penalized B-Splines | The pyGAM Package |  |  |  |
|-----------------------------|------------------|----------------------------|---------------------|-------------------|--|--|--|
| Illustrative Exa            | mples            | Illustrative Examples      |                     |                   |  |  |  |

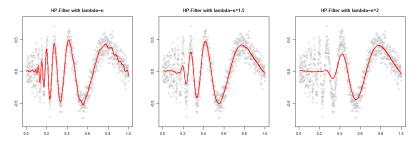






| Generalized Additive Models | Smoothing Spline | Trend Filtering<br>000€000 | Penalized B-Splines | The pyGAM Package |
|-----------------------------|------------------|----------------------------|---------------------|-------------------|
| R:hpfilter Resu             | ılts             |                            |                     |                   |

- R package: https://cran.r-project.org/package=mFilter
- Use hpfilter(y, type="lambda", freq) with  $\lambda$ -specification





| Generalized Additive Models | Smoothing Spline | Trend Filtering | Penalized B-Splines | The pyGAM Package |
|-----------------------------|------------------|-----------------|---------------------|-------------------|
| Trend Filtering             | $\ell_1$ approad | ch              |                     |                   |

•  $\ell_1$ -trend filtering by Kim, et al. (2009) and Tibshiran (2014):

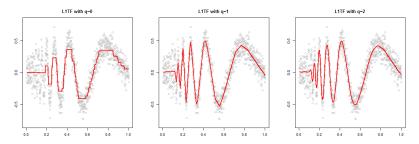
$$\min_{\boldsymbol{\alpha}\in\mathbb{R}^n}\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{\alpha}\|_2^2+\lambda\|\boldsymbol{D}^{(q+1)}\boldsymbol{\alpha}\|_{\ell_1},\quad q=0,1,2,\ldots$$

- Extended to different orders of finite differences.
- The  $\ell_1$ -penalty induces the piecewise smoothness.
- Hyperparameter can be determined by the BIC criterion.



| Generalized Additive Models         | Smoothing Spline | Trend Filtering<br>00000●0 | Penalized B-Splines | The pyGAM Package |
|-------------------------------------|------------------|----------------------------|---------------------|-------------------|
| <i>ℓ</i> <sub>1</sub> -Trend Filter | ing Results      |                            |                     |                   |

- R package at https://github.com/glmgen/glmgen
- Use trendfilter(y, k=q) plus BIC parameter tuning





| Research on $\ell_{\ell}$   | -Trend Filte     | rino                       |                     |                   |
|-----------------------------|------------------|----------------------------|---------------------|-------------------|
| Generalized Additive Models | Smoothing Spline | Trend Filtering<br>000000● | Penalized B-Splines | The pyGAM Package |

• The  $\ell_0$ -regularized trend filtering problem is formulated by

$$\min_{\boldsymbol{\alpha}\in\mathbb{R}^n}\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{\alpha}\|_2^2+\lambda\|\boldsymbol{D}^{(q+1)}\boldsymbol{\alpha}\|_{\ell_0},\quad q=0,1,2,\ldots$$

- Much more promising results, but challenging with  $\ell_0$ -optimization
- R:AMIAS Package: https://cran.r-project.org/package=AMIAS



| Generalized Additive Models | Smoothing Spline | Trend Filtering | Penalized B-Splines<br>●00 | The pyGAM Package |
|-----------------------------|------------------|-----------------|----------------------------|-------------------|
| Table of Conten             | nts              |                 |                            |                   |

- Generalized Additive Models
- 2 Smoothing Spline
- **3** Trend Filtering
- Penalized B-Splines
- 5 The pyGAM Package



| Generalized Additive Models | Smoothing Spline | Trend Filtering | Penalized B-Splines<br>○●○ | The pyGAM Package |
|-----------------------------|------------------|-----------------|----------------------------|-------------------|
| Penalzied B-Sp              | olines           |                 |                            |                   |

- Initialize B-Spline bases (degree q) with dense knots (equal spaced)
- Run the  $\ell_2$ -penalized regression:

$$\min_{\boldsymbol{\alpha}\in\mathbb{R}^n}\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{\Phi}\boldsymbol{\alpha}\|_2^2+\lambda\|\boldsymbol{D}^{(q+1)}\boldsymbol{\alpha}\|_{\ell_2}^2,$$

where  $\Phi$  represents the design matrix generated by B-Spline bases.

• It leads to the closed-form solution (generalized ridge estimator):

$$\hat{\mathbf{y}} = \mathbf{\Phi} \left( \mathbf{\Phi}^T \mathbf{\Phi} + \lambda (\mathbf{D}^{(q+1)})^T \mathbf{D}^{(q+1)} \right)^{-1} \mathbf{\Phi}^T \mathbf{y}$$

• Note that this is used by the pyGAM package (to be discussed).

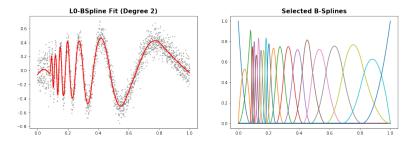


## Research on $\ell_0$ -penalized B-Splines

• Ongoing investigation by switching  $\ell_2$ -penalty to  $\ell_0$ -penalty:

$$\min_{\boldsymbol{\alpha}\in\mathbb{R}^n}\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{\Phi}\boldsymbol{\alpha}\|_2^2+\lambda\|\boldsymbol{D}^{(q+1)}\boldsymbol{\alpha}\|_{\ell_0},$$

• An iterative reweighing solution being developed, with promising results:





| Generalized Additive Models | Smoothing Spline | Trend Filtering | Penalized B-Splines | The pyGAM Package<br>●○○ |
|-----------------------------|------------------|-----------------|---------------------|--------------------------|
| Table of Conte              | ents             |                 |                     |                          |

- Generalized Additive Models
- 2 Smoothing Spline
- 3 Trend Filtering
- Penalized B-Splines
- 5 The pyGAM Package



| Generalized Additive Models | Smoothing Spline | Trend Filtering | Penalized B-Splines | The pyGAM Package<br>○●○ |
|-----------------------------|------------------|-----------------|---------------------|--------------------------|
| The pyGAM Pa                | ackage           |                 |                     |                          |

- A Python package for GAM: https://github.com/dswah/pyGAM
- o pip install pygam
- The pyGAM package adopts the  $\ell_2$ -penalized B-splines.
- It supports increasing/decreasing, convex/concave constraints.
- It comes with "partial dependency plot" for visualizing feature functions.
- See the supplementary Python code/notebook for demonstration with examples ...



Generalized Additive Models

Smoothing Spline

Trend Filtering

Penalized B-Splines

The pyGAM Package

# Thank You!

### Q&A or Email ajzhang@umich.edu

