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Decision Trees Tree Ensembles

Tree-based Methods

Original CART (Classification and Regression Trees)
by Brieman, Friedman, Olshen, and Stone (1984).

A single small decision tree is easy to interpret, but
lack of prediction performance.

Ensemble learning can make weak learners strong.
Schapire (1990): “The strength of weak learnability”.

Tree ensembles: bagging, random forests, boosting,
stacking, . . . are among the most powerful machine
learning algorithms available today.

The tree ensembles (typically, random forests and
boosting) are black box models, and they can be
explained by post-hoc interpretability methods.
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Decision Trees: 2D case
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Decision Trees: 1D case
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Regression Trees

It follows the generalized additive model with piecewise constant features:

f̂ (x) =
K∑

m=1
µ̂mI(x ∈ Rm), µ̂m = avg(yi |xi ∈ Rm)

At each recursive step, it finds the best splitting jth variable with the split
point s by minimizing the SSE (sum of squared errors):

min
j ,s

[ ∑
xi ∈R1

(yi − µ̂1)2 +
∑
xi ∈R2

(yi − µ̂2)2
]

where the split regions R1 = {xi |xi j ≤ s} and R2 = {xi |xi j > s}.

This recursive partitioning strategy gives the tree growing algorithm,
resulting in a large tree T0.
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Cost-complexity Pruning

For a subtree T ⊆ T0 obtained by pruning T0, denote by |T | the number of
terminal nodes in T . Define the cost complexity criterion

|T |∑
m=1

∑
xi ∈Rm

(yi − µ̂m)2 + α |T |

The tuning parameter α ≥ 0 controls the trade-off between tree size and
its goodness of fit. It can be estimated by cross-validation.

Thus we have a tree first-growing-then-pruning strategy.
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Classification Trees

Consider the classification problem with multi-class target (1,2, . . . ,K).

Let p̂mk be the proportion of class-k observations within terminal node m.

By majority voting, we classify all the observations in node m to class

k̂(m) = arg max
k

p̂mk

Similar to regression trees, we can split nodes and prune the tree upon
suitable changes of node impurity measures.
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Classification Trees

The impurity measures for each terminal node of a classification tree:

Misclassification error:

1
Nm

∑
xi ∈Rm

I(yi , k̂(m)) = 1 − p̂mk̂(m)

Gini-index: ∑
k,k′

p̂mk p̂mk′ =

K∑
k=1

p̂mk(1 − p̂mk)

Cross-entropy or deviance:

K∑
k=1

p̂mk log p̂mk
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Classification Trees
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Decision Trees Tree Ensembles

Decision Trees: Summary

automatically select variables that are used to define the splits;

are easy to interpret for small-size trees (not so easy for large trees);

recursively partition the input space as a divide-and-conquer operation;

may handle both numeric/categorical features seamlessly;

may deal with missing data effectively;

but, often suffer from high-variance and therefore usually have poor
generalization performances.
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Tree Ensembles

Tree-based ensembe learners use trees as building blocks to construct
powerful prediction models.

The key is to get rid of the variance by averaging, thus improve the
prediction performance.

Bagging: “bootstrap aggregation” of multiple trained trees.

Random forests: improves bagging by split-variable randomization.

Boosting: sequential ensembles (AdaBoost, GBM, XGBoost, ... )

StatSoft.org 13



Decision Trees Tree Ensembles

Bagging

Bagging means “bootstrap aggregation” and it takes the form of

f̂bag(x) =
1
B

B∑
b=1

f̂b(x)

where f b(x) is trained on the bth bootstrap sample (B in total).

Out-Of-Bag (OOB): For bootstrap resampling (with replacement), the
probability of not being covered by the bth bootstrap sample is

Pr(xi < Xb) =
(
1 − 1

n

)n
≈ e−1 = 0.368.

Therefore about one-third of observations are not used to fit the bagged
trees, which are called Out-Of-Bag (OOB) observations.

Model evaluation based on the OOB observations yields the OOB error
estimate, which is similar to the cross-validation estimate of test error.
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Random Forests

Random forests improve the bagging algorithm by decorrelating the
trees via split-variable randomization.

Each time only m out of p predictors are chosen at random as split
variables. Typical values of m are √p (classification case) and p/3
(regression case).

Therefore, random forests use both horizontal (sample-wise) and vertical
(feature-wise) randomization techniques.

The trees trained in such way have less correlated performance and make
the averaging predictor less variable and more reliable.
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Boosting

Boosting fits trees sequentially by using information from previous fitted
trees.

(In contrast, bagging or random forests that fit trees in parallel on each
re-sampled observations).

There are multiple boosting algorithms, including AdaBoost, Gradient
Boosting, XGBoost (extreme gradient boosting), LightGBM, . . .

Let us take a look at the AdaBoost algorithm for regression problem (from
Chapter 8 of ISLR2013).

StatSoft.org 16



Decision Trees Tree Ensembles

Boosting
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Thank You!

Q&A or Email ajzhang@umich.edu
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