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Introduction

» Univariate outlier detection: e.g. Box-plot, QQ-plot

>> boxplot(zscore(X), ’*PARAM’, val,...);
>> qqplot(zscore(X(:,3j)));

» Multivariate outlier detection: Mahalanobis distance
MD; (1, B) = (x%; — )" B (% — p)

1. Often used are the sample mean X and covariance >
2. MD ~ X;% asymptotically, for x ~ N,(p,3)
3. However, problem with masking and swamping effects ...
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Univariate case: Box-plot and QQ-plot

Viariable: BKs per US Pop

CSBA Economic Indicators, Aug-2008
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Multivariate case: Masking and Swamping

Synthetic outlisrs Masking and svamping effects
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Our development

» We propose a sequential method, called the peeling algorithm

1. Reasoning from projection pursuit
2. MD-based peeling algorithm
3. Visualization by polar coordinates

> |deas mostly originated from real applications in financial risk

a. Anti-Money Laundering project
b. CBSA GeoRisk visualization
c. Recent storm from Wall Street

» Examples will be provided throughout the talk ...
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MD-based Peeling Algorithm

Peeling Methodology
Principal Direction of Anomaly
MD-based Peeling Algorithm

Aijun Zhang, October 2008 Peeling Algorithm in Financial Risk Page. 7



Peeling Methodology Principal Direction of Anomaly

MD-based Peeling Algorithm

Problem Setup

Sphering: For {x;}!" ; in RP, consider the “sphered” data,
z; = Zfl/z(xi -x), i=1,...,n
given any 3 > 0 (positive definite).
Projection: For w € RP with ||[w]|| = 1, the “projected” data
{wlzy,...,wlz,}, in 1-D.

Question: What is the best direction w* that would separate
clearly the outlying observations in 1-D space?
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Peeling Methodology Principal Direction of Anomaly

MD-based Peeling Algorithm

Principal Direction of Anomaly
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1-D Projected Data
Idio-Residual-Return on 2008-03-30

Suppose 3100a% outliers, define the separation Score(w, ) by

where ¢w.o = (1 — a)-th quantile of projected data. Then,

PDA: w), = argHmﬁix Score(w, ), « € (0,0.5]
w||=1
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Peeling Methodology Principal Direction of Anomaly

MD-based Peeling Algorithm

Theorem
Given the projected data 9o = {z1,...,2zn}, let 2 C Yo, then
Score(w, a) = — 3 wha— {na)
core(w,a) = ——— wlz — {na}ow,a
na(l — a) \@\—[na]
For oo = j/n with j =1,...,|n/2], the score is bounded from above by
Score(w, j/n) < —Hz(1 s where
R D S Pk
ze@* z€D

The maximum score is attained by the PDA w’
il/n (1 7))
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Peeling Methodology Principal Direction of Anomaly

MD-based Peeli Igorithm

Corollary 1: Set o = 1/n and let z* < max; ||z;|| with maximal Euclidean distance.
Then, the PDA is given by

Wi, = arg Inax Score(w 1/n) = 2z*/||z"||

Corollary 2: Based on the raw data %y = {x;}";, the separation score

Score(w, j/n; X) = max Z wIs=12(x-%), 9c 9

n

=3 5% &

The PDA is given by w*/n o 271/2(’?1 n- %), where x(1 g = l. > e+ X and
7" = argmax|g|—; HE 1/2 D oxen(x X)H

Fora =1/n and ¥ = E, let x* attain the maximal Mahalanobis distance. Then

PDA: wi, =% '/

(x* — %)//MD(x*)
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MD-based Peeling Algorithm

Peeling Algorithm

> One_by_one procedure: detect . Mahalanobis-distance Outlier Peeling
one outlier every step, remove it i e
before proceeding to next step .

» Masking/swamping immunity:
the “intermediate” observations
are likely affected by the extreme
ones, but not vice versa.

» The recursive MD-based algorithm

is simple to understand, and easy I e e R
to implement; see Corollary 2
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Peeling Algorithm

MD-based Peeling Algorithm: input o (0.5 by default)
1. Initialize 21 = 99 = {x;}]; and k =0

2. Compute Mahalanobis distance (MD) for sample Z;; find
one of the elements with max MD

‘MD = mahal(D1,D1); [maxMD, outId] = max(MD);

3. If K < nag, flag D1yut1q as outlier, update k + 1 — k,
P1\outId — %) and go back to Step 2.

{4} Determine the best o € (0, o] based on MD-histogram;
output the indices of the corresponding na outliers.
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Peeling Methodology
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Idio-Residual-Return on 2008-09-30

peel(zscore(X), alphaO);

>> alpha0 = 0.2;

>> idx =

>> Ticker(idx)’

ans = ’WB’ ’S0V’ °’NCC’

’SFI’ ’GNW’

Example: 2-D stock returns (financial sector) on Sep 29-30
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CBSA GeoRisk

Radar-chart Visualization Tracking Financial Storm

Radar-chart Visualization
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CBSA GeoRisk

Radar-chart Visualization Tracking Financial Storm

Radar-chart Visualization

» For each suspicious subject i, the peeling algorithm gives us

(a) Mahalanobis distance: D; = v/MD; (scalar)
(b) Outlying direction: w; s.t. |[w| =1 (spherical)

» Radar-chart visualization is a natural choice, by converting

D; — Radius, w; — Radian (angle)

» Trivial case if w € R?:
>> theta = acos(W(:,1)).*sign(W(:,2));

» Nontrivial if w is high-dimensional. We need dimension
reduction techniques, e.g. MDS (multidimensional scaling)
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CBSA GeoRisk

Radar-chart Visualization Tr: ng Financial Storm

CBSA GeoRisk

Radar-chart: CBSA GeoRisk
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» Robust PC1 and PC2 are used as reference coordinates

» Better choices are under development = to report later
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CBSA GeoRisk

Radar-chart Visualization Tracking Financial Storm

Tracking Financial Storm

Black September in Wall Street, 2008
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For i =1,...,288 (Financial firms included in DJUSFN and KBW)
Ri(t) = ani + BriRo(t) +exi(t), t € [Tk—1,7k]

Portfolio anomaly detection via idiosyncratic residuals &;
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Radar-chart Visualization inancial Storm

Black September - Radar Tracking
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Discussion
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Discussion

> A whole family of interesting problems are being investigated:

1.

4.

Robust estimate of location and scale, e.g. MCD
(minimum covariance determinant) estimator
Peeling-based projection pursuit, e.g. robust PCA
Spherical clustering: Hierarchical linkage, K-means, the
mixture vMF (von Mises-Fisher) model
Multidimesional scaling onto polar coordinates

» We look forwards to more applications in financial risk analysis
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